D. T. Read, Y.-W. Cheng, R. Geiss Materials Reliability Division

National Institute of Standards and Technology

Boulder, Colorado 80305

Acknowledgment: Use of indentation instruments at:
Colorado School of Mines
University of Colorado

ASME IMECE 2004, Anaheim, Ca Nov. 15, 2004

Summary:

- Tensile behavior measured for 2.6 μm thick electrodeposited Cu, room temperature to 150 °C
- Modulus values results low, but uncertainty high in this technique
- Strengths 200-300 MPa
- Low tensile ductility
- Temperature dependence of strengths moderate, in the expected direction
- Strain rate effects moderate to minimal in the range tested
- Fracture surfaces showed chisel-point fractures, ligaments, suggestive of high local ductility
- Rapid formation of unknown corrosion layer masked subtle metallographic features on the fracture surfaces

Motivation:

Data for design of electronic interconnects

Intel Technology Journal Vol. 6, #2, May, 2002

Material:

Electrodeposited copper

Seed: Grain size:

thermally evaporated; $>\sim 1 \mu m$ (EBSD)

60 nm thick on bare silicon Texture:

Solution: Film plane normal is <111>

Conventional acid-based,

with brightener

Thickness:

2.6 µm

Material, continued:

Commercial high-precision nanoindentation instrument:

Modulus: 125±9 GPa, Hardness: 1.54±0.11 GPa

Material, continued:

Commercial nanoindentation instrument (aged):

Modulus: 122±6 GPa, Hardness: 1.40±0.08 GPa

Material, continued:

Method: Microtensile testing

Method, continued:

Force: Calibrated spring on force probe

Displacement: Digital image correlation

Specimen dimensions: Profilometer, optical microscope

Temperature: Thermocouples beneath chip and on

pull rod

Results: Stress-strain curves

Results: Temperature dependence

Literature: Carreker and Hibbard, Acta Metallurgica 1 654-663, 1953

Results: Moderate temperature dependence;

High strength vs pure annealed bulk;

Low tensile elongation to failure;

High variability of Young's modulus, E

Temp., C	Number of tests	YS, MPa	UTS, MPa	E, GPa	Elong., %
25	18	234±16	257±17	72±22	2.2±0.7
50	2	213±22	229±26	NA	1.5±0.2
100	2	201±22	228±20	82±3	1.7±0.07
150	3	184±13	204±11	82±24	2.2±1.1

Results: Strain rate effect on strength at room temperature is moderate to minimal

Results: Fractography (1), top view

>>>> local necking; chisel-point failure

Results: Fractography (2), end view

Strange surface features—
metallographic,
?????????????

or reptilian?

<u>/__ /___</u>

15

Results: Fractography (3), end view

Strange surface features—
metallographic,
?????????????

or reptilian?

Results: Fractography (4), end view

Strange surface features—

Mud cracks?

Results: Fractography, end view: (6)

Strange surface features—

Mud cracks?

Summary:

- Tensile behavior measured for 2.6 μm thick electrodeposited Cu, room temperature to 150 °C
- Modulus values results low, but uncertainty high in this technique
- Strengths 200-300 MPa
- Low tensile ductility
- Temperature dependence of strengths moderate, in the expected direction
- Strain rate effects moderate to minimal in the range tested
- Fracture surfaces showed chisel-point fractures, ligaments, suggestive of high local ductility
- Rapid formation of unknown corrosion layer masked subtle metallographic features on the fracture surfaces